MSA-0836

>6V Fixed Gain Amp, High Gain, Minimum Feedback

Description

Lifecycle status: Active

Features

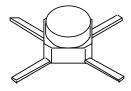
The MSA-08 is a high gain, minimum feedback 50ohm gain block targeted for narrow and wide bandwidth IF amplifier applications. It is offered in a wide variety of plastic and ceramic packages. Bias: 10V, 35mA; G = 23dB; NF = 3dB; P1dB = 12.5dBm; IP3i = -1dBm all at 1GHz

MSA-0836

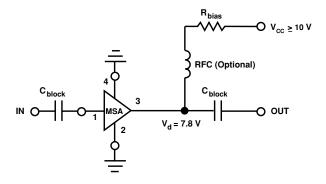
Cascadable Silicon Bipolar MMIC Amplifier

Data Sheet

Description


The MSA-0836 is a high performance silicon bipolar Monolithic Microwave Integrated Circuit (MMIC) housed in a cost effective, microstrip package. This MMIC is designed for use as a general purpose 50Ω gain block above 0.5 GHz and can be used as a high gain transistor below this frequency. Typical applications include narrow and moderate band IF and RF amplifiers in commercial and industrial applications.

The MSA-series is fabricated using Avago's 10 GHz f_T , 25 GHz f_{MAX} , silicon bipolar MMIC process which uses nitride self-alignment, ion implantation, and gold metallization to achieve excellent performance, uniformity and reliability. The use of an external bias resistor for temperature and current stability also allows bias flexibility.


Features

- Usable Gain to 6.0 GHz
- High Gain:
 32.5 dB Typical at 0.1 GHz
 23.0 dB Typical at 1.0 GHz
- Low Noise Figure: 3.0 dB Typical at 1.0 GHz
- Cost Effective Ceramic Microstrip Package

36 micro-X Package

Typical Biasing Configuration

MSA-0836 Absolute Maximum Ratings

Parameter	Absolute Maximum ^[1]	
Device Current	80 mA	
Power Dissipation ^[2,3]	750 mW	
RF Input Power	+13 dBm	
Junction Temperature	150°C	
Storage Temperature ^[4]	−65°C to 150°C	

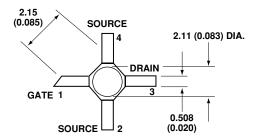
Thermal Resistance ^[2,5] :				
$\theta_{\rm jc} = 175^{\circ}{ m C/W}$				

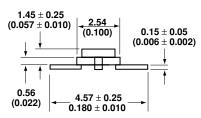
Notes

- 1. Permanent damage may occur if any of these limits are exceeded.
- 2. $T_{CASE} = 25$ °C.
- 3. Derate at 5.7 mW/°C for $T_C > 69$ °C.
- 4. Storage above +150°C may tarnish the leads of this package making it difficult to solder into a circuit.
- 5. The small spot size of this technique results in a higher, though more accurate determination of $\theta_{\rm jc}$ than do alternate methods.

Electrical Specifications^[1], $T_A = 25^{\circ}C$

Symbol	Parameters and Test Conditions: I_d = 36 mA, Z_0 = 50 Ω		Units	Min.	Тур.	Max.
G_P	Power Gain $(S_{21} ^2)$	f = 0.1 GHz f = 1.0 GHz f = 4.0 GHz	dB	22.0	32.5 23.0 10.5	25.0
VCWD	Input VSWR	f = 1.0 to 3.0 GHz			2.0:1	
VSWR	Output VSWR	f = 1.0 to 3.0 GHz			1.5:1	
NF	$50~\Omega$ Noise Figure	f = 1.0 GHz	dB		3.0	
P _{1 dB}	Output Power at 1 dB Gain Compression	f = 1.0 GHz	dBm		12.5	
IP ₃	Third Order Intercept Point	f = 1.0 GHz	dBm		27.0	
t_{D}	Group Delay	f = 1.0 GHz	psec		125	
V_{d}	Device Voltage		V	7.0	7.8	8.4
dV/dT	Device Voltage Temperature Coefficient		mV/°C		-17.0	


Note:


1. The recommended operating current range for this device is 20 to 40 mA. Typical performance as a function of current is on the following page.

Ordering Information

Part Numbers	No. of Devices	Comments		
MSA-0836-BLKG	100	Bulk		
MSA-0836-TR1G	1000	7" Reel		

36 micro-X Package Dimensions

- Notes:
 1. Dimensions are in millimeters (inches)
- 2. Tolerances: in .xxx = \pm 0.005 mm .xx = \pm 0.13

